AMENDMENT

Mail Stop AF
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Examiner Smith:

This Amendment is in response to the Office Action mailed April 20, 2012. This Amendment is timely because it is being submitted within the period for reply, which expires July 20, 2012. Please enter and consider the following:
AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

1. (Currently Amended) A media file delivery system, said system including:
 a portable computing device including:
 a memory unit;
 a camera; and
 a cellular transceiver; and
 a server including:
 a data transceiver; and
 a server memory unit storing at least one predefined QR code data sequence, wherein said at least one predefined QR code data sequence is associated with an expected receipt signal, wherein said expected receipt signal is associated with an associated media file,
 wherein said cellular transceiver is in wireless communication with said data transceiver,
 wherein said portable computing device receives said predefined QR code data sequence from said server using said cellular transceiver and stores said predefined QR code data sequence at said memory unit,
 wherein said portable computing device uses said camera to detect a QR code, converts said QR code to a detected QR code data, and compares said detected QR code data to said predefined QR code data sequence stored at said memory unit, wirelessly transmits said detected QR code data to said server using said cellular transceiver;
wherein said server receives said detected QR code data using said data transceiver and compares said detected QR code data to said predefined QR code data sequence stored at said server memory unit,

when said detected QR code data matches said predefined QR code data sequence, said portable computing device server transmits a receipt signal to said server using said cellular transceiver and said data transceiver, said server receives said receipt signal and transmits said associated media file from said server memory unit to said portable computing device using said data transceiver and said cellular transceiver.

2. (Original) The media file delivery system of claim 1 wherein said portable computing device is one of a smartphone and a tablet device.

3. (Original) The media file delivery system of claim 1 wherein said associated media file is a video file.

4. (Original) The media file delivery system of claim 1 wherein said associated media file is an audio file.

5. (Original) The media file delivery system of claim 1 wherein said associated media file is a text file.

6. (Original) The media file delivery system of claim 1, further including a second portable computing device including a second cellular transceiver,

wherein said second cellular transceiver is in wireless communication with said data transceiver,

when said detected QR code data matches said predefined QR code data sequence, said server transmits said associated media file from said server memory unit
to said second portable computing device using said data transceiver and said second cellular transceiver.

7. (Currently Amended) A media file delivery system, said system including:
 a portable computing device including:
 - a memory unit;
 - a GPS sensor; and
 - a cellular transceiver; and
 a server including:
 - a data transceiver; and
 - a server memory unit storing at least one predefined GPS location data sequence, wherein said at least one predefined GPS location data sequence is associated with an expected receipt signal, wherein said expected receipt signal is associated with an associated media file,
 wherein said cellular transceiver is in wireless communication with said data transceiver,
 wherein said portable computing device receives said predefined GPS location data sequence from said server using said cellular transceiver and stores said predefined GPS location data sequence at said memory unit,
 wherein said portable computing device uses said GPS sensor to detect a GPS signal, converts said GPS signal to a detected GPS location data, and compares said detected GPS location data to said predefined GPS location data sequence stored at said memory unit, wirelessly transmits said detected GPS location data to said server using said cellular transceiver,
 wherein said server receives said detected GPS location data using said data transceiver and compares said detected GPS location data to said predefined GPS location data sequence stored at said server memory unit,
when said detected GPS location data matches said predefined GPS location data sequence, said portable computing device server transmits a receipt signal to said server using said cellular transceiver and said data transceiver, said server receives said receipt signal and transmits said associated media file from said server memory unit to said portable computing device using said data transceiver and said cellular transceiver.

8. (Original) The media file delivery system of claim 7 wherein said portable computing device is one of a smartphone and a tablet device.

9. (Original) The media file delivery system of claim 7 wherein said associated media file is a video file.

10. (Original) The media file delivery system of claim 7 wherein said associated media file is an audio file.

11. (Original) The media file delivery system of claim 7 wherein said associated media file is a text file.

12. (Original) The media file delivery system of claim 7, further including a second portable computing device including a second cellular transceiver,

 wherein said second cellular transceiver is in wireless communication with said data transceiver,

 when said detected GPS location data matches said predefined GPS location data sequence, said server transmits said associated media file from said server memory unit to said second portable computing device using said data transceiver and said second cellular transceiver.

13. (Original) A remote display system, said system including:
a portable computing device including:
 a GPS sensor; and
 a cellular transceiver;
a display device including:
 a second cellular transceiver;
at least one LED; and
a server including:
 a data transceiver; and
 a server memory unit storing at least one predefined GPS location data
sequence, wherein said at least one predefined GPS location data sequence is associated
with an associated trigger file,
 wherein said cellular transceiver and said second cellular transceiver are in
wireless communication with said data transceiver,
 wherein said portable computing device uses said GPS sensor to detect a GPS
signal, converts said GPS signal to a detected GPS location data, and wirelessly transmits
said detected GPS location data to said server using said cellular transceiver,
 wherein said server receives said detected GPS location data using said data
transceiver and compares said detected GPS location data to said predefined GPS
location data sequence stored at said server memory unit,
 when said detected GPS location data matches said predefined GPS location data
sequence, said server transmits said associated trigger file from said server memory unit
to said display device using said data transceiver and said second cellular transceiver and
in response to said second cellular transceiver receiving said associated trigger file, said
at least one LED is illuminated

14. (Original) The remote display system of claim 13 wherein said portable
computing device is one of a smartphone and a tablet device.
15. (Original) The remote display system of claim 13 wherein said display device further includes:

 a hydraulic actuator; and

 an expandable shell,

 when said second cellular transceiver receives said associated trigger file, said hydraulic actuator performs one of expanding said expandable shell and detracting said expandable shell.

16. (Original) The media file delivery system of claim 1, further including a game webserver, including a webserver memory unit storing at least one game webpage dataset,

 wherein said game webserver is in communication with said server,

 wherein said game webserver is connected to the Internet,

 when said detected QR code data matches said predefined QR code data sequence, said server transmits said associated media file from said server memory unit to said game webserver, and

 said game webserver retrieves said at least one webpage dataset from said webserver memory unit, adds said associated media file to said at least one webpage dataset, and stores said at least one webpage dataset at said webserver memory unit.

17. (Original) The media file delivery system of claim 16, further including an external PC, including a PC display and a PC keyboard,

 wherein said external PC is connected to the Internet,

 when said external PC receives a desired game webpage access input at said PC keyboard, said external PC transmits a desired game webpage access signal to said game webserver through the Internet, said game webserver retrieves said at least one game webpage dataset and transmits said at least one game webpage dataset to said external PC, and said external PC display outputs said at least one game webpage dataset.
18. (Original) The media file delivery system of claim 7, further including a game webserver, including a webserver memory unit storing at least one game webpage dataset,

wherein said game webserver is in communication with said server,
wherein said game webserver is connected to the Internet.
when said detected GPS location data matches said predefined GPS location data sequence, said server transmits said associated media file from said server memory unit to said game webserver, and

said game webserver retrieves said at least one webpage dataset from said webserver memory unit, adds said associated media file to said at least one webpage dataset, and stores said at least one webpage dataset at said webserver memory unit.

19. (Original) The media file delivery system of claim 18, further including an external PC, including a PC display and a PC keyboard,

wherein said external PC is connected to the Internet,
when said external PC receives a desired game webpage access input at said PC keyboard, said external PC transmits a desired game webpage access signal to said game webserver through the Internet, said game webserver retrieves said at least one game webpage dataset and transmits said at least one game webpage dataset to said external PC, and said external PC display outputs said at least one game webpage dataset.
REMARKS

The present application includes claims 1-19. Claims 1-19 were rejected. By this Amendment, claims 1 and 7 have been amended.

The Applicant now turns to the rejection of claims 1-12 U.S.C. § 102(e) as being anticipated by Khan. Claims 1-12 include independent claims 1 and 7. In the interest of speedily advancing prosecution the Applicant has made substantive amendments to each of these independent claims to add additional limitations not taught by the prior art.

More specifically, Paragraph 0094 of the present application teaches a portable computing device (PCD) receiving a predefined QR code data sequence from a server and storing the predefined QR code data sequence at a memory unit. In contrast, Khan teaches a mobile device interfacing with a touch point but Khan does not teach a server transmitting a QR code data sequence to a mobile device. This limitation has been added to independent system claim 1.
Additionally, Paragraph 0094 of the present application teaches a PCD detecting a QR code and comparing the detected QR code with the predefined QR code data sequence that was stored at the memory unit. In contrast, Khan teaches a mobile device user utilizing a touch point to notify a merchant of his presence, but Khan does not teach a mobile device making a comparison of a detected QR code data with a predefined QR code data sequence. This limitation has been added to independent system claim 1.

Furthermore, Paragraph 0091 of the present application teaches a PCD receiving a predefined GPS location data sequence from a server and storing the predefined GPS location data sequence at a memory unit. In contrast, Khan does not teach a server transmitting a GPS location to a mobile device. This limitation has been added to independent system claim 7.

Additionally, Paragraph 0091 of the present application teaches a PCD detecting a GPS signal and comparing the detected GPS signal with the predefined GPS location data sequence that was stored at the memory unit. In contrast, Khan teaches the use of GPS technologies to detect a mobile device, but Kahn does not teach a mobile device making a comparison of a detected GPS signal with a predefined GPS location data. This limitation has been added to independent system claim 7.

Consequently, the Applicant respectfully submits that independent claims 1 and 7 are free from Khan and allowable, as well as their respective dependent claims.
The Applicant now turns to the rejection of claims 1-12 under 35 U.S.C. § 103(a) as being unpatentable over Khan in further view of Perea-OcHoa. As mentioned above, Applicant has added further limitations to independent claims 1 and 7 to free them from Khan.

Perea-OcHoa fails to teach a PCD comparing a detected QR code with a predefined QR code data sequence received from a server, and also fails to teach a PCD comparing a detected GPS signal with a predefined GPS location data sequence received from a server. As discussed above, these limitations have been added to independent system claims 1 and 7. Consequently, since neither Khan nor Perea-OcHoa teaches these limitations the Applicant respectfully submits that independent claims 1 and 7 are free from Khan in view of Perea-OcHoa and allowable, as well as their respective dependent claims.

The Applicant now turns to the rejection of claims 1-19 under 35 U.S.C. § 103(a) as being unpatentable over Khan in further view of Auterio. Turning now to independent claims 1 and 7, as mentioned above, Applicant has added limitations to free them from Khan.

Auterio teaches a user manually inputting a QR code into a client system (Paragraph 0121), but Auterio does not teach a client system comparing a predefined QR code data sequence, which was transmitted from a server to the client system, with a detected QR code. Since neither Khan nor Auterio teaches a PCD comparing a detected
QR code with a predefined QR code data sequence stored at the PCD, Applicant respectfully submits that independent claim 1 is free from Khan in view of Auterio and allowable, as well as its respective dependent claims.

Additionally, Auterio teaches a game system or a location system using GPS technology to track a user's presence (Paragraph 0119), but Auterio does not teach a client system comparing a predefined GPS location data sequence, which was transmitted from a server to the client system, with a detected GPS signal. Since neither Khan nor Auterio teaches a PCD comparing a detected GPS signal with a predefined GPS location data sequence stored at the PCD, Applicant respectfully submits that independent claim 7 is free from Khan in view of Auterio and allowable, as well as its respective dependent claims.

Turning now to independent claim 13, neither Khan nor Auterio teaches a server transmitting a trigger file to a display device in response to a PCD transmitting a GPS location data to the server. Consequently, Applicant respectfully submits that independent claim 13 is free from Khan in view of Auterio and allowable, as well as its respective dependent claims.
CONCLUSION

If the Examiner has any questions or the Applicant can be of any assistance, the Examiner is invited and encouraged to contact the Applicant at the number below.

The Commissioner is authorized to charge any necessary fees or credit any overpayment to the Deposit Account of Pat, Ent & Win, Ltd. Account No. 00-0010.

Respectfully submitted,

Date: 4/27/12

/9729/

9729
Registration No. 12345

PAT, ENT & WIN, LTD.
1337 Patent St.
Champaign, IL 61820

Telephone: 123-456-7890
Facsimile: 234-567-8901