AMENDMENT

Mail Stop AF
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Examiner Nile:

This Amendment is in response to the Office Action mailed April 19, 2019. This Amendment is timely because it is being submitted within the period for reply which expires July 19, 2019. Please enter and consider the following amendments and remarks.

Amendments to the claims begin on page 2.

Remarks begin on page 13.

- Overall good - good job w/103 argument
AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

1. (Currently Amended) A streetlight sound output device comprising:

A sound-output device;

wherein said sound-output device is physically connected to a streetlight, wherein said sound-output device outputs an analog signal, wherein said sound-output device is in data communication with a processor;

a first transceiver;

wherein said first transceiver is in data communication with a network, wherein said first transceiver receives an audio data and a time data from said network, wherein said time data represents the current time data that the speaker sound output device outputs said analog signal;

a server;

wherein said server is in data communication with said first transceiver;

wherein said server receives an audio data and a time data from said first transceiver;

wherein said server automatically selects an audio data and a time data, wherein one audio data is selected per unique time data, wherein the selected audio data and time data is the winning audio data and winning time data;
wherein said server transmits said winning audio data and winning time data to said first transceiver, wherein said first transceiver transmits said winning audio data and winning time data to said network, wherein said network transmits said winning audio data and winning time data to a second transceiver; a network, wherein said network is in electronic communication with a remote computer, wherein said remote computer receives a user input, wherein said user input includes an audio data and a time data, wherein said time data represents the time that a processor retrieves said audio data from a memory unit

a second transceiver, wherein said second transceiver is in data electronic communication with said network, wherein said second transceiver receives an audio data and a time data from said network, wherein said second transceiver is in data communication with said processor;

a processor,

wherein said processor receives said winning audio data and winning time data from a server at said second transceiver,

wherein said processor stores said winning audio data and said winning time data in a memory unit, wherein said memory unit is in data communication with said processor,

wherein said processor continuously receives a current time data from a clock, wherein said processor continuously compares said current time data to said winning time data,
wherein said processor retrieves said winning audio data from said memory unit when said current time data equals said winning time data,

wherein said processor converts said winning audio data to said an analog signal,

wherein said processor transmits said analog signal to said speaker sound output device; and

a memory unit, wherein said memory unit is configured to store audio data and time data[[]]; and

a speaker, wherein said speaker is physically connected to a streetlight, wherein said speaker is in data communication with said processor, wherein said processor converts said audio data to an analog signal, wherein said processor transmits said analog signal to said speaker, wherein said speaker outputs said analog signal.

2. (Cancelled)

3. (Currently Amended) The streetlight sound output communication device of claim 1, wherein said network is a wireless network.

4. (Currently Amended) A method of selecting an audio data and transmitting said audio data to a streetlight speaker sound output device, said method comprising:
receiving said audio data and a time data at a network at a server, wherein said server is in data communication with a first transceiver, wherein said transceiver is in electronic communication with said network;

transmitting said audio data and said time data to a second first transceiver, wherein said first second transceiver is in data communication with a processor said network and a server;

selecting a winning audio data and winning time data, including an audio data and a time data, from said audio data and said time data at said server;

transmitting said winning audio data and said winning time data from said first transceiver to said network;

transmitting said winning audio data and winning time data from said network to a second transceiver, wherein said second transceiver is in data communication with said network, wherein said second transceiver is in data communication with a processor;

storing said winning audio data and said winning time data at said [[a]] memory unit, wherein said memory unit is in data communication with said processor, wherein said memory unit is configured to store audio data and time data;

receiving a current time data continuously from a clock at said processor, wherein said clock is in data communication with said processor;

comparing said current time data continuously with said winning time data at said processor;
retrieving said winning audio data from said memory unit at said processor when said current time data equals said winning time data at said processor;

converting said winning audio data to an analog signal at a said processor;

transmitting said analog signal to said a speaker sound output device, wherein said processor is in data connection with said speaker sound output device; and

outputting said analog signal at a speaker sound output device, wherein said speaker sound output device is physically attached to a streetlight.

5. (Currently Amended) The method of claim 4, further including:

requesting said winning audio data from said memory unit at said server before said server transmits said winning audio data;

transmitting said winning audio data and said time data to said second transceiver when said winning audio data does not exist in is not retrieved from said memory unit.

6. (Currently Amended) The method of claim 5, further including transmitting said winning time data if when said winning audio data is retrieved from said memory unit.

7. (Cancelled)

8. (Currently Amended) The method of claim 6, further including:
receiving a data file at said server network, wherein said data file includes said audio data, said time data, and a price data;

transmitting said data file to said first transceiver;

comparing the price data of a plurality of data files at said server;

determining a winning audio data file with highest said price data at said server;

wherein said winning audio file includes a winning audio data, a winning time data, and a winning price data; and

transmitting said winning audio data file with said highest price data and said winning time data to said processor a network, wherein said network is in communication with said second transceiver.

9. (Cancelled)

10. (Cancelled)

11. (Currently Amended) A system for transmitting audio data to a streetlight audio device, said system including:

 a computer including a computer transceiver, wherein said computer transceiver is connected to a wireless network, wherein said computer transceiver transmits data to and receives data from a said network, wherein said computer receives an advertiser data file, wherein said advertiser data file includes an audio data and a time data, wherein
said computer transmits said advertiser data file to said wireless network at said computer transceiver;

a network receiving and transmitting said advertiser data file, wherein said network is in data communication with said computer transceiver, a first transceiver, and a second transceiver;

a first transceiver receiving said data file from said network, wherein said first transceiver is in data communication with a server;

a server receiving said advertiser data file from said computer, wherein said server includes a first transceiver, wherein said server stores said advertiser data file in a database, wherein said server continually receives present time data from a clock; wherein said server selects retrieves an a-winning advertiser data file before said present time data equals said time data in the data file for a unique-time-data,

wherein said server retrieves said winning advertiser file from said database;

wherein said server transmits said advertiser data file to said network by said first transceiver, wherein said network then transmits said advertiser data file to said second transceiver;

a second transceiver receiving an data file from said network, wherein said second transceiver is in data communication with a processor, wherein said second transceiver is in electronic communication with said network;
a processor including a second transceiver, wherein said second transceiver receives said advertiser file from said server, wherein said processor stores storing said advertiser data file in a memory unit, wherein said processor includes a clock.

a clock, wherein said clock is in data communication with said processor, wherein said processor continually receives a current-present time data from said clock, wherein said processor repetitively compares said current present time data to said time data of said advertiser file stored in the said memory unit, wherein said processor retrieves said audio file data of said data file when said current present time data matches equals said time data, wherein said processor then converts said audio data to an analog signal representing said audio data; and

a speaker receiving said analog signal from said processor, sound output device, wherein said speaker sound output device is in data communication with said processor, wherein said processor converts said audio data to an analog signal, wherein said processor transmits an analog signal representing said audio data to said sound output device, wherein said speaker sound output device outputs said analog signal, wherein said speaker is physically attached to a streetlight, ;and

a streetlight, wherein said sound output device, said processor, said second transceiver, and said memory unit are physically attached to said streetlight.

12. (Currently Amended) The system of claim 11, wherein the server further includes instructions to request requests said audio data from said memory unit for the
existence said audio file before transmission, if said audio file exists at said memory unit then said server transmits said time data to said processor, said processor stores said start time data in said memory unit with said existing audio data.

13. (Currently Amended) The system of claim 12, further comprising transmitting said advertiser data file if said audio data does not exist at said memory unit.

14. (Currently amended) The system of claim 11, wherein said advertiser data file further includes a location data.

15. (Currently Amended) The system of claim 14, wherein said advertiser data file further includes a price data.

16. (Currently Amended) The system of claim 15, wherein said server retrieves selects one a winning advertiser data file for a unique time data and a unique location data from said memory unit, wherein said server associates said winning advertiser data file with a second transceiver having an equal a corresponding location data, said server then transmits said audio data and said start time data to said second transceiver, wherein said second transceiver is in data communication with said processor, wherein said processor stores said audio data and said time data at said memory unit.
17. (Original) The system of claim 11, further including transmitting a crowd data from a server to a processor, wherein a camera is attached to a streetlight, wherein said camera transmits a crowd data through said processor to said transceiver, wherein said transceiver transmits said crowd data to said server, wherein said server stores said crowd data to a server memory unit.

18. (Currently Amended) The system of claim 11, further including prohibiting wherein said advertiser data file further includes a business field data and a location data, wherein said server prohibits a processor with said location data from receiving an audio data with said business field data.

19. (Cancelled)

20. (Currently Amended) The device of claim 1, wherein said network further receives a location data from said computer, wherein said location data represents the geographic location of said second transceiver.

21. (Currently Amended) The device of claim 20, further including a server, wherein said server receives an audio data, a time data and a location data, from said first transceiver network, wherein said server automatically selects an audio data and a
time data, wherein one audio data and time data is selected for a unique location data, wherein said server identifies said a second transceiver corresponding having the geographic location represented by to said location data, wherein said server transmits said winning audio data and winning time data to said first transceiver, wherein said first transceiver transmits said winning audio data and winning time data to said network, wherein said network transmits said winning audio data and winning time data to said second transceiver.
Application No. 17/000,000
Attorney Docket No. 1456US00

REMARKS

The Applicant thanks Examiner Nile for his time and effort in preparing the Final Office Action dated April 19, 2019 and the telephonic interview of April 19th. The present application includes claims 1, 3-6, 8, 11-21. Claims 1, 3-6, 8, 11-21 were rejected. By this Amendment, claim 19 has been canceled, claims 1, 3-6, 8, 11-16, 18, and 20-21 have been amended.

The Applicant now turns to the rejection of claims 1, 3-5, 8, and 11-21 under 35 U.S.C. § 112(b) as being indefinite for failing to particularly point out and distinctly claim the subject matter which the inventor or a joint inventor regards as the invention. By this Amendment, claims, 3-6, 8, 11-16, 18, and 20-21 have been amended and claim 19 has been cancelled. Consequently, it is respectfully submitted that the claims are in compliance with 35 U.S.C. § 112(b).

The Applicant now turns to the rejection of claims 1, 3-5, 8 and 11-21 under 35 U.S.C. §101 as being directed to non-statutory subject matter.

2019 Revised Patent Subject Matter Eligibility Guidance notice issued January 7, 2019 (hereinafter “2019 Guidance”) states a claim is patent eligible “if the claim as a whole integrates the recited judicial exception into a practical application.” The elements of the claim have to be considered together, not individually. Claims 1, 3-6, 8, 12-16, 18,
and 20-21 include three independent claims: claims 1, 4, and 11. Independent claims 1, 4, and 11 have been amended to include additional limitations by this Amendment.

Example 40 presents one claim that integrates a mental process into a physical application and a second claim that does not go beyond an abstract idea. Like claim 1 of Example 40, the amended claims here may be distinguished from the data collection and management concepts that were held to be abstract ideas by the Federal Circuit.

Amended claims 1, 4, and 11 here is analogous to claim 1 of Example 40. Specifically, the method pre-stores the audio data which avoids hindrance of network performance from constant data streaming through the network. The combination of claim elements to store and trigger retrieval of data at a specific time go beyond routine functions of a computer and present a non-convention and non-generic way of distributing audio data without network interruption during the output. This provides a specific improvement over prior systems, resulting in improved audio distribution.

When viewed as a combination, the elements as a whole integrate into a particular application of transmitting audio data and outputting sound representative of that audio data at a remote location. Thus, like in BASCOM, the claimed combination of additional elements presents a specific, discrete implementation of the abstract idea. See BASCOM Global Internet v. AT&T Mobility, LLC, 827 F.3d 1341, 1350-52 (Fed. Cir. 2016). The claim as a whole integrates the mental process into a practical application, so the claim is not directed toward a judicial exception.

The CityIQ System teaches collecting data through signal inputs, including weather monitoring, video monitoring, audio detection, and seismic detection. The data is collected and transmitted to a server in real-time. The CityIQ System does not teach outputting a signal that is pre-stored in a memory unit which is in data communication with the processor.

Lee teaches a method for outputting, from a portable device, one signal at a first device and a second signal at a second device. Lee teaches outputting a signal at a device based on the characteristics of the signal and the application generating the signal. The output is initiated by running an application on the electronic device 101. Paragraph 0053 states the processor determines the output device of audio corresponding to an application run on the electronic device. Lee does not teach outputting an analog signal at a specific time.

Considering the CityIQ System and Lee in combination, the references do not teach outputting a pre-stored signal at a streetlight at a predetermined time. The CityIQ System does not teach a method for outputting audio stored in a memory unit connected to the processor. Lee does not teach triggering a signal output based on the time.
Therefore, the references do not combine to teach a method for outputting pre-stored audio data at a streetlight at a predetermined time.

As amended, claim 1 recites "wherein said processor retrieves said audio data from said memory unit when said current time data equals said time data, wherein said processor converts said audio data to an analog signal, wherein said processor transmits said analog signal to a speaker . . . wherein said speaker outputs an analog signal." As amended, claim 4 recites "retrieving said audio data from said memory unit at said processor when said current time data equals said time data." As amended, claim 11 recites "said processor repetitively compares said present time data to said time data of said data file stored in said memory unit, wherein said processor retrieves said audio data of said advertiser file when said present time data equals said time data." The claims show the audio data is stored in memory, then are retrieved at a specific time. As mentioned above, the CityIQ system in light of Lee does not teach retrieving and outputting pre-stored audio data at a streetlight at a predetermined time.

Consequently, claims 1, 4 and 11 are respectfully submitted to be free of the CityIQ Current System Solution Brief in light of Lee. Additionally, claims 3 and 20-21 depend from claim 1, and thus include all the limitations of claim 1. Claims 5-7 and 8 depend from claim 4, and thus include all the limitations of claim 4. Claims 12-18 depend from claim 11, and thus include all the limitations of claim 11. Consequently, claims 3, 5-7, 8, 12-21 are also respectfully submitted to be allowable.
Application No. 17/000,000
Attorney Docket No. 1456US00

CONCLUSION

If the Examiner has any questions or the Applicant can be of any assistance, the Examiner is invited and encouraged to contact the Applicant at the number below.

The Commissioner is authorized to charge any necessary fees or credit any overpayment to the Deposit Account of 11144456, Account No. 14561456.

Respectfully submitted,

Date: _______________ April 26, 2019 _______________ /1456/

1456
Registration No. 1456

PAT ENT & WIN
504 Pennsylvania Ave.
Champaign, IL 61820

Telephone: 217-145-6666
Facsimile: 217-145-6000